Microsoft’s new partnership with MIT can see Autonomous cars soon make safer decisions on the road

The autonomous future is near we all know it. Whether you are pumped to the clouds about cars that can drive themselves or absolutely terrified, the autonomous future is destined to revolutionize our world. Not yet, however.


Self-driving cars are still open to making mistakes, in part because the AI training can only account for so many situations. Microsoft and MIT might just fill in those gaps with a new a model they have developed that can catch these virtual “blind spots,” as MIT describes them. The approach has the AI compare a human’s actions in a given situation to what it would have done, and alters its behavior based on how closely it matches the response. If an autonomous car doesn’t know how to pull over when an ambulance is racing down the road, it could learn by watching a flesh-and-bone driver moving to the side of the road.

Researchers even have a way to prevent the driverless vehicle from becoming overconfident and marking all instances of a given response as safe. A machine learning algorithm not only identifies acceptable and unacceptable responses, but uses probability calculations to spot patterns and determine whether something is truly safe or still leaves the potential for problems. Even if an action is right 90 percent of the time, it might still see a weakness that it needs to address.

Scientists have only tested their model with video games, where there are limited parameters and relatively ideal conditions. Microsoft and MIT still need to test with real cars. If this works, though, it could go a long way toward making self-driving cars practical. Early vehicles still have problems dealing with simple obstacles and challenges, let alone fast-paced traffic where a mistake can lead to a crash. This could help them take on tricky situations without requiring carefully-crafted custom solutions or putting passengers at risk.

Microsoft’s partnership with Renault and Nissan has had little outcome since 2013